Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
Trends Parasitol ; 39(1): 10-11, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470783

RESUMO

Toxoplasma gondii exploits the migratory properties of monocytes and dendritic cells to promote tissue dissemination. Recently, ten Hoeve et al. reported that the parasite effector protein GRA28 conspires with host chromatin modifiers to confer dendritic cell-like features that convert sessile macrophages into migratory cells that transport infection to distal organs.


Assuntos
Toxoplasma , Macrófagos/parasitologia , Células Dendríticas/parasitologia
2.
Parasit Vectors ; 15(1): 393, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303229

RESUMO

BACKGROUND: Women in early pregnancy infected by Toxoplasma gondii may have severe adverse pregnancy outcomes, such as spontaneous abortion and fetal malformation. The inhibitory molecule T cell immunoglobulin and mucin domain 3 (Tim-3) is highly expressed on decidual dendritic cells (dDCs) and plays an important role in maintaining immune tolerance. However, whether T. gondii infection can cause dDC dysfunction by influencing the expression of Tim-3 and further participate in adverse pregnancy outcomes is still unclear. METHODS: An abnormal pregnancy model in Tim-3-deficient mice and primary human dDCs treated with Tim-3 neutralizing antibodies were used to examine the effect of Tim-3 expression on dDC dysfunction after T. gondii infection. RESULTS: Following T. gondii infection, the expression of Tim-3 on dDCs was downregulated, those of the pro-inflammatory functional molecules CD80, CD86, MHC-II, tumor necrosis factor-α (TNF-α), and interleukin-12 (IL-12) were increased, while those of the tolerant molecules indoleamine 2,3-dioxygenase (IDO) and interleukin-10 (IL-10) were significantly reduced. Tim-3 downregulation by T. gondii infection was closely associated with an increase in proinflammatory molecules and a decrease in tolerant molecules, which further resulted in dDC dysfunction. Moreover, the changes in Tim-3 induced by T. gondii infection further reduced the secretion of the cytokine IL-10 via the SRC-signal transducer and activator of transcription 3 (STAT3) pathway, which ultimately contributed to abnormal pregnancy outcomes. CONCLUSIONS: Toxoplasma gondii infection can significantly downregulate the expression of Tim-3 and cause the aberrant expression of functional molecules in dDCs. This leads to dDC dysfunction, which can ultimately contribute to abnormal pregnancy outcomes. Further, the expression of the anti-inflammatory molecule IL-10 was significantly decreased by Tim-3 downregulation, which was mediated by the SRC-STAT3 signaling pathway in dDCs after T. gondii infection.


Assuntos
Células Dendríticas , Receptor Celular 2 do Vírus da Hepatite A , Toxoplasmose , Animais , Feminino , Humanos , Camundongos , Gravidez , Células Dendríticas/parasitologia , Células Dendríticas/patologia , Regulação para Baixo , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Toxoplasma , Toxoplasmose/imunologia
3.
Parasite Immunol ; 44(7): e12917, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35340042

RESUMO

The intracellular parasite Leishmania mexicana inhibits camptothecin (CPT)-induced apoptosis of monocyte-derived dendritic cells (moDC) through the down-regulation of p38 and JNK phosphorylation, while the kinase Akt is maintained active for 24 h. In addition, the infection of moDC with L. mexicana promastigotes increases the protein presence of the antiapoptotic protein Bcl-xL. In the present work, we aimed to investigate the role of Akt in the inhibition of apoptosis of moDC by L. mexicana and in the modulation of the expression of the antiapoptotic proteins Bcl-2, Mcl-1 and Bcl-xL. moDC were infected with L. mexicana metacyclic promastigotes and treated with CPT, an Akt inhibitor, or both and the mitochondrial outer membrane permeabilization (MOMP) and protein presence of active caspase 3, Bcl-2, Mcl-1 and Bcl-xL were evaluated. Our results show that the specific inhibition of Akt reverts the apoptosis protective effect exerted by L. mexicana on moDC reflected by a reduction in MOMP, caspase 3 activation, and upregulation of Bcl-xL. Interestingly, we also found that the infection of moDC with L. mexicana promastigotes induces a decrease in Bcl-2 along with an isoform change of Mcl-1, this independently to Akt activity. We demonstrated that Akt is deeply involved in the inhibition of apoptosis of moDC by L. mexicana.


Assuntos
Leishmania mexicana , Apoptose , Proteínas Reguladoras de Apoptose , Camptotecina/farmacologia , Caspase 3 , Células Dendríticas/parasitologia , Leishmania mexicana/fisiologia , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Proteína bcl-X/metabolismo
4.
Parasit Vectors ; 15(1): 3, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34986898

RESUMO

BACKGROUND: Toxoplasma gondii is a zoonotic intracellular protozoon that is estimated to infect about 30% of the world's population, resulting in toxoplasmosis in immunocompromised patients and adverse outcomes in cases of primary infection during pregnancy. Exosomes are tubular vesicles secreted by cells, and function in intercellular communication. It has been reported that the exosomes secreted by T. gondii-infected immune cells transmit infection signals to the uninfected cells. However, the mechanism and effect of the exosome transmission are still vague. We therefore investigated the function of the exosomes transmitted from DC2.4 cells infected with the T. gondii RH strain (Tg-DC-Exo) to the uninfected cells, as well as their roles in anti-infection. METHODS: We conducted exosome isolation and identification with ultracentrifugation, transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot (WB) analysis. Exosome uptake by recipient cells was identified by PKH67 assay. The signal transmission and the abundance of miR-155-5p were determined using transwell assay and qRT-PCR. For detection of immune responses, cytokine secretion was evaluated. The T. gondii B1 gene was determined to evaluate tachyzoite proliferation. RESULTS: We observed that Toxoplasma infection upregulated miR-155-5p expression in DC2.4 cell-secreted exosomes, and those exosomes could be ingested by murine macrophage RAW264.7 cells. Tg-DC-Exo and miR-155-5p stimulated host proinflammatory immune responses including increased production of proinflammatory cytokines IL-6 and TNF-α, and proinflammatory marker-inducible nitric oxide synthase (iNOS). The NF-κB pathway was activated by downregulation of SOCS1, leading to inhibition of T. gondii tachyzoite proliferation in RAW264.7 cells. CONCLUSIONS: Our findings provide a novel mechanism for how infected cells transmit infection signals to the uninfected cells through exosome secretion after T. gondii infection, followed by inflammatory responses and anti-infection reactions, which may help us develop a new strategy for toxoplasmosis prevention, especially in immunocompromised patients.


Assuntos
Células Dendríticas/parasitologia , Exossomos/metabolismo , MicroRNAs/farmacologia , Toxoplasma/fisiologia , Zoonoses/parasitologia , Animais , Linhagem Celular , Células Dendríticas/metabolismo , Exossomos/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Células RAW 264.7 , Coelhos , Transdução de Sinais
5.
Cell Rep ; 37(2): 109816, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644571

RESUMO

Cytokines are typically single gene products, except for the heterodimeric interleukin (IL)-12 family. The two subunits (IL-12p40 and IL-12p35) of the prototype IL-12 are known to be simultaneously co-expressed in activated myeloid cells, which secrete the fully active heterodimer to promote interferon (IFN)γ production in innate and adaptive cells. We find that chimeric mice containing mixtures of cells that can only express either IL-12p40 or IL-12p35, but not both together, generate functional IL-12. This alternate two-cell pathway requires IL-12p40 from hematopoietic cells to extracellularly associate with IL-12p35 from radiation-resistant cells. The two-cell mechanism is sufficient to propel local T cell differentiation in sites distal to the initial infection and helps control systemic dissemination of a pathogen, although not parasite burden, at the site of infection. Broadly, this suggests that early secretion of IL-12p40 monomers by sentinel cells at the infection site may help prepare distal host tissues for potential pathogen arrival.


Assuntos
Células Dendríticas/metabolismo , Subunidade p35 da Interleucina-12/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Leishmania major/patogenicidade , Leishmaniose Cutânea/metabolismo , Células Estromais/metabolismo , Linfócitos T/metabolismo , Animais , Comunicação Celular , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita , Interferon gama/metabolismo , Subunidade p35 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/genética , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Multimerização Proteica , Transdução de Sinais , Células Estromais/imunologia , Células Estromais/parasitologia , Linfócitos T/imunologia , Linfócitos T/parasitologia
6.
Sci Rep ; 11(1): 17238, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446757

RESUMO

Immune evasion is a hallmark of persistent echinococcal infection, comprising modulation of innate immune cells and antigen-specific T cell responses. However, recognition of Echinococcus granulosus by dendritic cells (DCs) is a key determinant of the host's response to this parasite. Given that mTOR signaling pathway has been described as a regulator linking metabolism and immune function in DCs, we reported for the first time in these cells, global translation levels, antigen uptake, phenotype, cytokine transcriptional levels, and splenocyte priming activity upon recognition of the hydatid fluid (HF) and the highly glycosylated laminar layer (LL). We found that LL induced a slight up-regulation of CD86 and MHC II in DCs and also stimulated the production of IL-6 and TNF-α. By contrast, HF did not increase the expression of any co-stimulatory molecules, but also down-modulated CD40 and stimulated the expression of the anti-inflammatory cytokine IL-10. Both parasitic antigens promoted protein synthesis through mTOR activation. The use of rapamycin decreased the expression of the cytokines tested, empowered the down-modulation of CD40 and also reduced splenocyte proliferation. Finally, we showed that E. granulosus antigens increase the amounts of LC3-positive structures in DCs which play critical roles in the presentation of these antigens to T cells.


Assuntos
Antígenos de Helmintos/imunologia , Células Dendríticas/imunologia , Equinococose/imunologia , Echinococcus granulosus/imunologia , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/imunologia , Animais , Autofagossomos/imunologia , Autofagossomos/metabolismo , Proliferação de Células , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/parasitologia , Equinococose/parasitologia , Echinococcus granulosus/fisiologia , Feminino , Citometria de Fluxo , Camundongos , Microscopia Confocal , Linfócitos T/imunologia , Serina-Treonina Quinases TOR/metabolismo
7.
Immunohorizons ; 5(8): 721-732, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462311

RESUMO

Plasmacytoid dendritic cells (pDCs) are potent producers of type I IFN (IFN-I) during viral infection and respond to IFN-I in a positive feedback loop that promotes their function. IFN-I shapes dendritic cell responses during helminth infection, impacting their ability to support Th2 responses. However, the role of pDCs in type 2 inflammation is unclear. Previous studies have shown that pDCs are dispensable for hepatic or splenic Th2 responses during the early stages of murine infection with the trematode Schistosoma mansoni at the onset of parasite egg laying. However, during S. mansoni infection, an ongoing Th2 response against mature parasite eggs is required to protect the liver and intestine from acute damage and how pDCs participate in immune responses to eggs and adult worms in various tissues beyond acute infection remains unclear. We now show that pDCs are required for optimal Th2 cytokine production in response to S. mansoni eggs in the intestinal-draining mesenteric lymph nodes throughout infection and for egg-specific IFN-γ at later time points of infection. Further, pDC depletion at chronic stages of infection led to increased hepatic and splenic pathology as well as abrogated Th2 cell cytokine production and activation in the liver. In vitro, mesenteric lymph node pDCs supported Th2 cell responses from infection-experienced CD4+ T cells, a process dependent on pDC IFN-I responsiveness, yet independent of Ag. Together, these data highlight a previously unappreciated role for pDCs and IFN-I in maintaining and reinforcing type 2 immunity in the lymph nodes and inflamed tissue during helminth infection.


Assuntos
Citocinas/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/parasitologia , Citocinas/metabolismo , Células Dendríticas/parasitologia , Feminino , Citometria de Fluxo/métodos , Interações Hospedeiro-Parasita/imunologia , Contagem de Linfócitos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/metabolismo , Esquistossomose mansoni/parasitologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/parasitologia , Células Th2/imunologia , Células Th2/metabolismo , Células Th2/parasitologia
8.
Front Immunol ; 12: 661241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122419

RESUMO

As a relatively successful pathogen, several parasites can establish long-term infection in host. This "harmonious symbiosis" status relies on the "precise" manipulation of host immunity and metabolism, however, the underlying mechanism is still largely elusive. Immunometabolism is an emerging crossed subject in recent years. It mainly discusses the regulatory mechanism of metabolic changes on reprogramming the key transcriptional and post-transcriptional events related to immune cell activation and effect, which provides a novel insight for understanding how parasites regulate the infection and immunity in hosts. The present study reviewed the current research progress on metabolic reprogramming mechanism exploited by parasites to modulate the function in various immune cells, highlighting the future exploitation of key metabolites or metabolic events to clarify the underlying mechanism of anti-parasite immunity and design novel intervention strategies against parasitic infection.


Assuntos
Células Dendríticas/imunologia , Linfócitos/imunologia , Macrófagos/imunologia , Doenças Parasitárias/imunologia , Plasmodium/imunologia , Schistosoma/imunologia , Trypanosoma/imunologia , Animais , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Linfócitos/metabolismo , Linfócitos/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Doenças Parasitárias/metabolismo , Doenças Parasitárias/parasitologia , Plasmodium/fisiologia , Schistosoma/fisiologia , Trypanosoma/fisiologia
9.
Cell Mol Life Sci ; 78(12): 5197-5212, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34023934

RESUMO

Multiple cellular processes, such as immune responses and cancer cell metastasis, crucially depend on interconvertible migration modes. However, knowledge is scarce on how infectious agents impact the processes of cell adhesion and migration at restrictive biological barriers. In extracellular matrix, dendritic cells (DCs) infected by the obligate intracellular protozoan Toxoplasma gondii undergo mesenchymal-to-amoeboid transition (MAT) for rapid integrin-independent migration. Here, in a cellular model of the blood-brain barrier, we report that parasitised DCs adhere to polarised endothelium and shift to integrin-dependent motility, accompanied by elevated transendothelial migration (TEM). Upon contact with endothelium, parasitised DCs dramatically reduced velocities and adhered under both static and shear stress conditions, thereby obliterating the infection-induced amoeboid motility displayed in collagen matrix. The motility of adherent parasitised DCs on endothelial monolayers was restored by blockade of ß1 and ß2 integrins or ICAM-1, which conversely reduced motility on collagen-coated surfaces. Moreover, parasitised DCs exhibited enhanced translocation across highly polarised primary murine brain endothelial cell monolayers. Blockade of ß1, ß2 integrins, ICAM-1 and PECAM-1 reduced TEM frequencies. Finally, gene silencing of the pan-integrin-cytoskeleton linker talin (Tln1) or of ß1 integrin (Itgb1) in primary DCs resulted in increased motility on endothelium and decreased TEM. Adding to the paradigms of leukocyte diapedesis, the findings provide novel insights in how an intracellular pathogen impacts the migratory plasticity of leukocytes in response to the cellular environment, to promote infection-related dissemination.


Assuntos
Barreira Hematoencefálica/parasitologia , Movimento Celular , Células Dendríticas/parasitologia , Endotélio Vascular/parasitologia , Integrinas/metabolismo , Toxoplasma/fisiologia , Toxoplasmose/parasitologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Adesão Celular , Células Dendríticas/metabolismo , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Feminino , Interações Hospedeiro-Parasita , Integrinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Toxoplasmose/patologia
10.
J Leukoc Biol ; 110(4): 617-628, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34028876

RESUMO

Protective cytotoxic and proinflammatory cytokine responses by NK cells impact the outcome of infections by Toxoplasma gondii, a common parasite in humans and other vertebrates. However, T. gondii can also sequester within NK cells and downmodulate their effector functions. Recently, the implication of GABA signaling in infection and inflammation-related responses of mononuclear phagocytes and T cells has become evident. Yet, the role of GABAergic signaling in NK cells has remained unknown. Here, we report that human and murine NK cells synthesize and secrete GABA in response to infection challenge. Parasitized NK cells secreted GABA, whereas activation stimuli, such as IL-12/IL-18 or parasite lysates, failed to induce GABA secretion. GABA secretion by NK cells was associated to a transcriptional up-regulation of GABA synthesis enzymes (glutamate decarboxylases [GAD65/67]) and was abrogated by GAD inhibition. Further, NK cells expressed GABA-A receptor subunits and GABA signaling regulators, with transcriptional modulations taking place upon challenge with T. gondii. Exogenous GABA and GABA-containing supernatants from parasitized dendritic cells (DCs) impacted NK cell function by reducing the degranulation and cytotoxicity of NK cells. Conversely, GABA-containing supernatants from NK cells enhanced the migratory responses of parasitized DCs. This enhanced DC migration was abolished by GABA-A receptor antagonism or GAD inhibition and was reconstituted by exogenous GABA. Jointly, the data show that NK cells are GABAergic cells and that GABA hampers NK cell cytotoxicity in vitro. We hypothesize that GABA secreted by parasitized immune cells modulates the immune responses to T. gondii infection.


Assuntos
Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/parasitologia , Transdução de Sinais , Toxoplasma/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Morte Celular , Degranulação Celular/fisiologia , Linhagem Celular , Movimento Celular , Células Dendríticas/parasitologia , Humanos , Células Matadoras Naturais/fisiologia , Camundongos Endogâmicos C57BL , Transcrição Gênica
11.
FASEB J ; 35(5): e21509, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33813781

RESUMO

Extracellular adenosine plays important roles in modulating the immune responses. We have previously demonstrated that infection of dendritic cells (DC) by Leishmania amazonensis leads to increased expression of CD39 and CD73 and to the selective activation of the low affinity A2B receptors (A2B R), which contributes to DC inhibition, without involvement of the high affinity A2A R. To understand this apparent paradox, we now characterized the alterations of both adenosine receptors in infected cells. With this aim, bone marrow-derived DC from C57BL/6J mice were infected with metacyclic promastigotes of L. amazonensis. Fluorescence microscopy revealed that L. amazonensis infection stimulates the recruitment of A2B R, but not of A2A R, to the surface of infected DC, without altering the amount of mRNA or the total A2B R density, an effect dependent on lipophosphoglycan (LPG). Log-phase promastigotes or axenic amastigotes of L. amazonensis do not stimulate A2B R recruitment. A2B R clusters are localized in caveolin-rich lipid rafts and the disruption of these membrane domains impairs A2B R recruitment and activation. More importantly, our results show that A2B R co-localize with CD39 and CD73 forming a "purinergic cluster" that allows for the production of extracellular adenosine in close proximity with these receptors. We conclude that A2B R activation by locally produced adenosine constitutes an elegant and powerful evasion mechanism used by L. amazonensis to down-modulate the DC activation.


Assuntos
5'-Nucleotidase/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Caveolina 1/metabolismo , Células Dendríticas/imunologia , Leishmaniose/imunologia , Microdomínios da Membrana/imunologia , Receptor A2B de Adenosina/metabolismo , Animais , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Células Dendríticas/patologia , Imunidade , Imunomodulação , Leishmania/imunologia , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Leishmaniose/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Masculino , Microdomínios da Membrana/parasitologia , Microdomínios da Membrana/patologia , Camundongos , Camundongos Endogâmicos C57BL
12.
Sci Rep ; 11(1): 1220, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441615

RESUMO

Infants and young children are the groups at greatest risk for severe disease resulting from Plasmodium falciparum infection. We previously demonstrated in mice that a protein vaccine composed of the chemokine macrophage inflammatory protein 3α genetically fused to the minimally truncated circumsporozoite protein of P. falciparum (MCSP) elicits high concentrations of specific antibody and significant reduction of liver sporozoite load in a mouse model system. In the current study, a squalene based adjuvant (AddaVax, InvivoGen, San Diego, Ca) equivalent to the clinically approved MF59 (Seqiris, Maidenhead, UK) elicited greater antibody responses in mice than the previously employed adjuvant polyinosinic:polycytidylic acid, ((poly(I:C), InvivoGen, San Diego, Ca) and the clinically approved Aluminum hydroxide gel (Alum, Invivogen, San Diego, Ca) adjuvant. Use of the AddaVax adjuvant also expanded the range of IgG subtypes elicited by mouse vaccination. Sera passively transferred into mice from MCSP/AddaVax immunized 1 and 6 month old macaques significantly reduced liver sporozoite load upon sporozoite challenge. Protective antibody concentrations attained by passive transfer in the mice were equivalent to those observed in infant macaques 18 weeks after the final immunization. The efficacy of this vaccine in a relevant non-human primate model indicates its potential usefulness for the analogous high risk human population.


Assuntos
Anticorpos Antiprotozoários/imunologia , Formação de Anticorpos/imunologia , Quimiocinas/imunologia , Células Dendríticas/imunologia , Macaca/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Esporozoítos/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Células Dendríticas/parasitologia , Modelos Animais de Doenças , Feminino , Imunização/métodos , Macaca/parasitologia , Malária Falciparum/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium falciparum/imunologia , Poli I-C/imunologia , Proteínas de Protozoários/imunologia , Vacinação/métodos
13.
Malar J ; 20(1): 9, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407502

RESUMO

BACKGROUND: Plasmodium falciparum causes the majority of malaria cases worldwide and children in sub-Saharan Africa are the most vulnerable group affected. Non-sterile clinical immunity that protects from symptoms develops slowly and is relatively short-lived. Moreover, current malaria vaccine candidates fail to induce durable high-level protection in endemic settings, possibly due to the immunomodulatory effects of the malaria parasite itself. Because dendritic cells play a crucial role in initiating immune responses, the aim of this study was to better understand the impact of cumulative malaria exposure as well as concurrent P. falciparum infection on dendritic cell phenotype and function. METHODS: In this cross-sectional study, the phenotype and function of dendritic cells freshly isolated from peripheral blood samples of Malian adults with a lifelong history of malaria exposure who were either uninfected (n = 27) or asymptomatically infected with P. falciparum (n = 8) was assessed. Additionally, plasma cytokine and chemokine levels were measured in these adults and in Malian children (n = 19) with acute symptomatic malaria. RESULTS: With the exception of lower plasmacytoid dendritic cell frequencies in asymptomatically infected Malian adults, peripheral blood dendritic cell subset frequencies and HLA-DR surface expression did not differ by infection status. Peripheral blood myeloid dendritic cells of uninfected Malian adults responded to in vitro stimulation with P. falciparum blood-stage parasites by up-regulating the costimulatory molecules HLA-DR, CD80, CD86 and CD40 and secreting IL-10, CXCL9 and CXCL10. In contrast, myeloid dendritic cells of asymptomatically infected Malian adults exhibited no significant responses above the uninfected red blood cell control. IL-10 and CXCL9 plasma levels were elevated in both asymptomatic adults and children with acute malaria. CONCLUSIONS: The findings of this study indicate that myeloid dendritic cells of uninfected adults with a lifelong history of malaria exposure are able to up-regulate co-stimulatory molecules and produce cytokines. Whether mDCs of malaria-exposed individuals are efficient antigen-presenting cells capable of mounting an appropriate immune response remains to be determined. The data also highlights IL-10 and CXCL9 as important factors in both asymptomatic and acute malaria and add to the understanding of asymptomatic P. falciparum infections in malaria-endemic areas.


Assuntos
Citocinas/sangue , Células Dendríticas/parasitologia , Malária Falciparum/sangue , Adulto , Infecções Assintomáticas , Quimiocinas/sangue , Criança , Pré-Escolar , Estudos Transversais , Eritrócitos/parasitologia , Feminino , Humanos , Malária/sangue , Masculino , Mali , Pessoa de Meia-Idade , Fenótipo , Plasmodium falciparum/fisiologia
14.
Cell Mol Immunol ; 18(6): 1512-1527, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32024978

RESUMO

Dendritic cells (DCs) are indispensable for defense against pathogens but may also contribute to immunopathology. Activation of DCs upon the sensing of pathogens by Toll-like receptors (TLRs) is largely mediated by pattern recognition receptor/nuclear factor-κB (NF-κB) signaling and depends on the appropriate ubiquitination of the respective signaling molecules. However, the ubiquitinating and deubiquitinating enzymes involved and their interactions are only incompletely understood. Here, we reveal that the deubiquitinase OTU domain, ubiquitin aldehyde binding 1 (OTUB1) is upregulated in DCs upon murine Toxoplasma gondii infection and lipopolysaccharide challenge. Stimulation of DCs with the TLR11/12 ligand T. gondii profilin and the TLR4 ligand lipopolysaccharide induced an increase in NF-κB activation in OTUB1-competent cells, resulting in elevated interleukin-6 (IL-6), IL-12, and tumor necrosis factor (TNF) production, which was also observed upon the specific stimulation of TLR2, TLR3, TLR7, and TLR9. Mechanistically, OTUB1 promoted NF-κB activity in DCs by K48-linked deubiquitination and stabilization of the E2-conjugating enzyme UBC13, resulting in increased K63-linked ubiquitination of IRAK1 (IL-1 receptor-associated kinase 1) and TRAF6 (TNF receptor-associated factor 6). Consequently, DC-specific deletion of OTUB1 impaired the production of cytokines, in particular IL-12, by DCs over the first 2 days of T. gondii infection, resulting in the diminished production of protective interferon-γ (IFN-γ) by natural killer cells, impaired control of parasite replication, and, finally, death from chronic T. encephalitis, all of which could be prevented by low-dose IL-12 treatment in the first 3 days of infection. In contrast, impaired OTUB1-deficient DC activation and cytokine production by OTUB1-deficient DCs protected mice from lipopolysaccharide-induced immunopathology. Collectively, these findings identify OTUB1 as a potent novel regulator of DCs during infectious and inflammatory diseases.


Assuntos
Cisteína Endopeptidases/metabolismo , Células Dendríticas/imunologia , Imunidade , Inflamação/imunologia , NF-kappa B/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Antígenos CD11/metabolismo , Células Dendríticas/parasitologia , Deleção de Genes , Interferon gama/metabolismo , Interleucina-12/farmacologia , Lipopolissacarídeos , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Poliubiquitina/metabolismo , Estabilidade Proteica , Sepse/imunologia , Sepse/patologia , Toxoplasma/fisiologia , Toxoplasmose/imunologia , Toxoplasmose/patologia , Ubiquitinação , Regulação para Cima
15.
Cytokine ; 145: 155208, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32736961

RESUMO

Dendritic cells (DCs), as antigen-presenting cells, can reportedly be infected withLeishmaniaparasites and hence provide a better option to trigger T-cell primary immune responses and immunological memory. We consistently primed DCs during culture with purified recombinant cytosolic tryparedoxin (rcTXN) and then evaluated the vaccine prospect of presentation of rcTXN against VL in BALB/c mice. We reported earlier the immunogenic properties of cTXN antigen derived fromL. donovani when anti-cTXN antibody was detected in the sera of kala-azar patients. It was observed that cTXN antigen, when used as an immunogen with murine DCs acting as a vehicle, was able to induce complete protection against VL in an infected group of immunized mice. This vaccination triggered splenic macrophages to produce more IL-12 and GM-CSF, and restricted IL-10 release to a minimum in an immunized group of infected animals. Concomitant changes in T-cell responses against cTXN antigen were also noticed, which increased the release of protective cytokine-like IFN-γ under the influence of NF-κß in the indicated vaccinated group of animals. All cTXN-DCs-vaccinated BALB/c mice survived during the experimental period of 120 days. The results obtained in our study suggest that DCs primed with cTXN can be used as a vaccine prospect for the control of visceral leishmaniasis.


Assuntos
Células Dendríticas/imunologia , Leishmania donovani/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/imunologia , Animais , Citocinas/imunologia , Células Dendríticas/parasitologia , Imunidade Celular/imunologia , Interleucina-10/imunologia , Interleucina-12/imunologia , Leishmaniose Visceral/parasitologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/imunologia , Linfócitos T/imunologia , Linfócitos T/parasitologia
16.
Scand J Immunol ; 93(4): e13001, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33247468

RESUMO

Lymphatic filariasis (LF) is the second leading cause of parasitic disabilities that affects millions of people in India and several other tropical countries. The complexity of this disease is endorsed by various immunopathological consequences such as lymphangitis, lymphadenitis and elephantiasis. The immune evasion strategies that a filarial parasite usually follows are chiefly initiated with the communication between the invaded parasites and parasite-derived molecules, with the Toll-like receptors (TLRs) present on the surface of the antigen-presenting cells (APCs). Classically, the filarial parasites interact with the DCs resulting in lowering of CD4+ T-cell responses. These CD4+ T-cell responses are the key players behind the immune-mediated pathologies associated with LF. In chronic stage, the canonical pro-inflammatory immune responses are shifted towards an anti-inflammatory subtype, which is favouring the parasite survivability within the host. The central theme of this review article is to present the overall immune response elicited when an APC, particularly a DC, encounters a filarial parasite.


Assuntos
Células Dendríticas/imunologia , Filariose Linfática/imunologia , Imunidade/imunologia , Parasitos/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos de Helmintos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/parasitologia , Células Dendríticas/parasitologia , Filariose Linfática/parasitologia , Humanos , Inflamação/imunologia , Inflamação/parasitologia , Receptores Toll-Like/imunologia
17.
J Cell Physiol ; 236(4): 2255-2267, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33345353

RESUMO

Neutrophils with their array of microbicidal activities are the first innate immune cells to guard against infection. They are also most crucial for the host's initial defense against Leishmania parasites which cause clinically diverse diseases ranging from self-healing cutaneous leishmaniasis (CL) to a more severe visceral form, visceral leishmaniasis (VL). Neutrophils are recruited in large numbers at the infection site after bite of sandfly, which is the vector for the disease. The initial interaction of neutrophils with the parasites may modulate the subsequent innate and adaptive immune responses and hence affect the disease outcome. The purpose of this review is to comprehensively appraise the role of neutrophils during the early stages of Leishmania infection with a focus on the visceral form of the disease. In the past decade, new insights regarding the role of neutrophils in VL have surfaced which have been extensively elaborated in the present review. In addition, since much of the information regarding neutrophil-Leishmania early interaction has accumulated through studies on mouse models of CL, these studies are also revisited. We begin by reviewing the factors which drive the recruitment of neutrophils at the site of injection by the sandfly. We then discuss the studies delineating the molecular mechanisms involved in the uptake of the Leishmania parasite by neutrophils and how the parasite subverts their microbicidal functions. In the end, the interaction of infected neutrophils with macrophages and dendritic cells is summarized.


Assuntos
Células Dendríticas/imunologia , Imunidade Inata , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Animais , Comunicação Celular , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Interações Hospedeiro-Patógeno , Humanos , Insetos Vetores , Leishmania donovani/patogenicidade , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/transmissão , Macrófagos/metabolismo , Macrófagos/parasitologia , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Psychodidae/parasitologia
18.
Front Immunol ; 11: 1098, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582184

RESUMO

Leishmania parasites are the causative agents of human leishmaniases. They infect professional phagocytes of their mammalian hosts, including dendritic cells (DCs) that are essential for the initiation of adaptive immune responses. These immune functions strictly depend on the DC's capacity to differentiate from immature, antigen-capturing cells to mature, antigen-presenting cells-a process accompanied by profound changes in cellular phenotype and expression profile. Only little is known on how intracellular Leishmania affects this important process and DC transcriptional regulation. Here, we investigate these important open questions analyzing phenotypic, cytokine profile and transcriptomic changes in murine, immature bone marrow-derived DCs (iBMDCs) infected with antibody-opsonized and non-opsonized Leishmania amazonensis (L.am) amastigotes. DCs infected by non-opsonized amastigotes remained phenotypically immature whereas those infected by opsonized parasites displayed a semi-mature phenotype. The low frequency of infected DCs in culture led us to use DsRed2-transgenic parasites allowing for the enrichment of infected BMDCs by FACS. Sorted infected DCs were then subjected to transcriptomic analyses using Affymetrix GeneChip technology. Independent of parasite opsonization, Leishmania infection induced expression of genes related to key DC processes involved in MHC Class I-restricted antigen presentation and alternative NF-κB activation. DCs infected by non-opsonized parasites maintained an immature phenotype and showed a small but significant down-regulation of gene expression related to pro-inflammatory TLR signaling, the canonical NF-kB pathway and the NLRP3 inflammasome. This transcriptomic profile was further enhanced in DCs infected with opsonized parasites that displayed a semi-mature phenotype despite absence of inflammasome activation. This paradoxical DC phenotype represents a Leishmania-specific signature, which to our knowledge has not been observed with other opsonized infectious agents. In conclusion, systems-analyses of our transcriptomics data uncovered important and previously unappreciated changes in the DC transcription factor landscape, thus revealing a novel Leishmania immune subversion strategy directly acting on transcriptional control of gene expression. Our data raise important questions on the dynamic and reciprocal interplay between trans-acting and epigenetic regulators in establishing permissive conditions for intracellular Leishmania infection and polarization of the immune response.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Interações Hospedeiro-Parasita/imunologia , Inflamassomos/imunologia , Leishmaniose/imunologia , Animais , Feminino , Leishmania mexicana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Transcriptoma/imunologia
19.
Methods Mol Biol ; 2137: 181-190, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399929

RESUMO

Dendritic cells (DCs) are potent antigen-presenting cells that possess the ability to stimulate naïve T cells, initiating the adaptive immune response. Ex vivo DC cultures are useful to evaluate how helminths regulate DC maturation and stimulatory activity. Here, we describe how to isolate CD11c+ from F. hepatica-infected mice to evaluate their activation state, cytokine production and regulatory function in an allogeneic T cell assay.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Fasciola hepatica/imunologia , Fasciolíase/imunologia , Animais , Antígenos de Helmintos/imunologia , Antígeno CD11c/imunologia , Fasciolíase/parasitologia , Feminino , Fatores Imunológicos/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Linfócitos T/parasitologia
20.
Math Biosci ; 326: 108374, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32416085

RESUMO

Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine produced by immune cells; it can play a protective or deleterious role in response to pathogens. The intracellular malaria parasite secretes a similar protein, PMIF. The present paper is concerned with severe malarial anemia (SMA), where MIF suppresses the recruitment of red blood cells (RBCs) from the spleen and the bone marrow. This suppression results in a decrease of the hemoglobin (Hb) in the blood to a dangerous level. Indeed, SMA is responsible for the majority of death-related malaria cases. Artesunate is the first line of treatment of SMA; it accelerates the death of infected RBCs (iRBCs), thereby decreasing parasitemia. However, artesunate does not increase the level of Hb, and, in some cases, post-artesunate hemolytic anemia requires blood transfusion. In order to avoid this situation, we explore combining artesunate with another drug so that the Hb level is increased to healthy levels while parasitemia is still controlled. In this paper we show, by a mathematical model, that increasing the Hb levels while controlling parasitemia in malarial anemia can be done with the experimental drug Epoxyazadiradione (Epoxy) in combination with artesunate. Epoxy acts as MIF inhibitor and thus has the potential to increase the Hb level. Simulations of the model show that the two drugs compliment each other: while artesunate is primarily responsible for decreasing parasitemia, Epoxy is primarily responsible for increasing the hemoglobin level.


Assuntos
Anemia/sangue , Anemia/tratamento farmacológico , Hemoglobinas/metabolismo , Malária Falciparum/sangue , Malária Falciparum/tratamento farmacológico , Modelos Biológicos , Parasitemia/sangue , Parasitemia/tratamento farmacológico , Anemia/parasitologia , Animais , Antimaláricos/administração & dosagem , Artesunato/administração & dosagem , Simulação por Computador , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Quimioterapia Combinada , Eritrócitos/parasitologia , Humanos , Oxirredutases Intramoleculares/antagonistas & inibidores , Limoninas/administração & dosagem , Ativação de Macrófagos , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Malária Falciparum/parasitologia , Conceitos Matemáticos , Camundongos , Modelos Imunológicos , Parasitemia/parasitologia , Células Th1/imunologia , Células Th1/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA